Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Pathogens ; 12(2)2023 Feb 17.
Article in English | MEDLINE | ID: covidwho-2243893

ABSTRACT

Technologies that facilitate the bulk sequencing of small numbers of cells as well as single-cell RNA sequencing (scRNA-seq) have aided greatly in the study of viruses as these analyses can be used to differentiate responses from infected versus bystander cells in complex systems, including in organoid or animal studies. While protocols for these analyses are typically developed with biosafety level 2 (BSL-2) considerations in mind, such analyses are equally useful for the study of viruses that require higher biosafety containment levels. Many of these workstreams, however, are not directly compatible with the more stringent biosafety regulations of BSL-3 and BSL-4 laboratories ensuring virus inactivation and must therefore be modified. Here we show that TCL buffer (Qiagen), which was developed for bulk sequencing of small numbers of cells and also facilitates scRNA-seq, inactivates both Ebola virus (EBOV) and SARS-CoV-2, BSL-4 and BSL-3 viruses, respectively. We show that additional heat treatment, necessary for the more stringent biosafety concerns for BSL-4-derived samples, was additionally sufficient to inactivate EBOV-containing samples. Critically, this heat treatment had minimal effects on extracted RNA quality and downstream sequencing results.

2.
PLoS Pathog ; 18(10): e1010479, 2022 10.
Article in English | MEDLINE | ID: covidwho-2154303

ABSTRACT

Exacerbated and persistent innate immune response marked by pro-inflammatory cytokine expression is thought to be a major driver of chronic COVID-19 pathology. Although macrophages are not the primary target cells of SARS-CoV-2 infection in humans, viral RNA and antigens in activated monocytes and macrophages have been detected in post-mortem samples, and dysfunctional monocytes and macrophages have been hypothesized to contribute to a protracted hyper-inflammatory state in COVID-19 patients. In this study, we demonstrate that CD169, a myeloid cell specific I-type lectin, facilitated ACE2-independent SARS-CoV-2 fusion and entry in macrophages. CD169-mediated SARS-CoV-2 entry in macrophages resulted in expression of viral genomic and subgenomic RNAs with minimal viral protein expression and no infectious viral particle release, suggesting a post-entry restriction of the SARS-CoV-2 replication cycle. Intriguingly this post-entry replication block was alleviated by exogenous ACE2 expression in macrophages. Restricted expression of viral genomic and subgenomic RNA in CD169+ macrophages elicited a pro-inflammatory cytokine expression (TNFα, IL-6 and IL-1ß) in a RIG-I, MDA-5 and MAVS-dependent manner, which was suppressed by remdesivir treatment. These findings suggest that de novo expression of SARS-CoV-2 RNA in macrophages contributes to the pro-inflammatory cytokine signature and that blocking CD169-mediated ACE2 independent infection and subsequent activation of macrophages by viral RNA might alleviate COVID-19-associated hyperinflammatory response.


Subject(s)
COVID-19 , Humans , Angiotensin-Converting Enzyme 2/genetics , Cytokines/metabolism , Macrophages , RNA, Viral/metabolism , SARS-CoV-2
3.
Journal of Environmental Engineering ; 148(11), 2022.
Article in English | ProQuest Central | ID: covidwho-2016999

ABSTRACT

The World Health Organization (WHO) and US Centers for Disease Control and Prevention (CDC) recommend cleaning soiled surfaces with soap and water, followed by use of approved disinfectant. However, data are lacking on the potential efficacy of soapy water alone as a disinfectant for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is relevant to low-resource settings where soapy water is prevalent for handwashing. To our knowledge, no appropriate biosafety level 1 (BSL-1) surrogate has been identified and confirmed for use in studies with soapy water and the highly infectious SARS-CoV-2. Therefore, our objectives were to determine the efficacy of soapy water alone as a disinfectant against SARS-CoV-2 and if commonly used BSL-1 bacteriophage surrogates could serve as a surrogate model for testing soapy water as a disinfectant. Overall, results indicate that SARS-CoV-2 can be reduced >4 log10 in suspension but only 0.50 log10 on a nonporous surface with 10 min of exposure to 0.5% soapy water. This difference is potentially attributed to less area of exposure on surfaces than in suspension. Phi6 (a verified SARS-CoV-2 surrogate for other disinfectants) was not appropriate for SARS-CoV-2 disinfection with soapy water. Further research is needed to determine an appropriate surrogate for SARS-CoV-2 disinfection with soapy water as disinfection of MS2 was similar to SARS-CoV-2 on surfaces only. Our work highlights the importance of confirming surrogates for each disinfectant used. Based on our results, we do not recommend a change to the current WHO and CDC surface disinfection protocols that recommend using soapy water to preclean a surface before applying disinfectant.

4.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology ; 36(Suppl 1), 2022.
Article in English | EuropePMC | ID: covidwho-1971027

ABSTRACT

Severe viral pneumonia caused by the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is characterized by a hyperinflammatory state typified by elevated circulating pro‐inflammatory cytokines, frequently leading to potentially lethal vascular complications including thromboembolism, disseminated intracellular coagulopathy and vasculitis. Though endothelial infection and subsequent endothelial damage have been described in patients with fatal COVID‐19, the mechanism by which this occurs remains elusive, particularly given that, under naïve conditions, pulmonary endothelial cells demonstrate minimal cell surface expression of the SARS‐CoV‐2 binding receptor ACE2. Herein we describe SARS‐CoV‐2 infection of the pulmonary endothelium in postmortem lung samples from individuals who died of COVID‐19, demonstrating both heterogeneous ACE2 expression and endothelial damage (Figure). In primary endothelial cell cultures, we show that SARS‐CoV‐2 infection is dependent on the induction of ACE2 protein expression and that this process is facilitated by type 1 interferon‐alpha (IFNα) or ‐beta(β) ‐ two of the main anti‐viral cytokines induced in severe SARS‐CoV‐2 infection ‐ but not significantly by other cytokines (including interleukin 6 and interferon g /λ). Our findings suggest that the stereotypical anti‐viral interferon response may paradoxically facilitate the propagation of COVID‐19 from the respiratory epithelium to the vasculature, raising concerns regarding the use of exogenous IFNα/β in the treatment of patients with COVID‐19.

5.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article in English | MEDLINE | ID: covidwho-1655773

ABSTRACT

SARS-CoV-2 entry into host cells is a crucial step for virus tropism, transmission, and pathogenesis. Angiotensin-converting enzyme 2 (ACE2) has been identified as the primary entry receptor for SARS-CoV-2; however, the possible involvement of other cellular components in the viral entry has not yet been fully elucidated. Here we describe the identification of vimentin (VIM), an intermediate filament protein widely expressed in cells of mesenchymal origin, as an important attachment factor for SARS-CoV-2 on human endothelial cells. Using liquid chromatography-tandem mass spectrometry, we identified VIM as a protein that binds to the SARS-CoV-2 spike (S) protein. We showed that the S-protein receptor binding domain (RBD) is sufficient for S-protein interaction with VIM. Further analysis revealed that extracellular VIM binds to SARS-CoV-2 S-protein and facilitates SARS-CoV-2 infection, as determined by entry assays performed with pseudotyped viruses expressing S and with infectious SARS-CoV-2. Coexpression of VIM with ACE2 increased SARS-CoV-2 entry in HEK-293 cells, and shRNA-mediated knockdown of VIM significantly reduced SARS-CoV-2 infection of human endothelial cells. Moreover, incubation of A549 cells expressing ACE2 with purified VIM increased pseudotyped SARS-CoV-2-S entry. CR3022 antibody, which recognizes a distinct epitope on SARS-CoV-2-S-RBD without interfering with the binding of the spike with ACE2, inhibited the binding of VIM with CoV-2 S-RBD, and neutralized viral entry in human endothelial cells, suggesting a key role for VIM in SARS-CoV-2 infection of endothelial cells. This work provides insight into the pathogenesis of COVID-19 linked to the vascular system, with implications for the development of therapeutics and vaccines.


Subject(s)
Endothelial Cells/virology , Extracellular Space/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Vimentin/metabolism , Virus Internalization , A549 Cells , Angiotensin-Converting Enzyme 2/metabolism , Coculture Techniques , Endothelium, Vascular/cytology , Endothelium, Vascular/metabolism , Endothelium, Vascular/virology , HEK293 Cells , Humans , Protein Binding
6.
Am J Physiol Lung Cell Mol Physiol ; 322(3): L462-L478, 2022 03 01.
Article in English | MEDLINE | ID: covidwho-1622104

ABSTRACT

There is an urgent need to understand how SARS-CoV-2 infects the airway epithelium and in a subset of individuals leads to severe illness or death. Induced pluripotent stem cells (iPSCs) provide a near limitless supply of human cells that can be differentiated into cell types of interest, including airway epithelium, for disease modeling. We present a human iPSC-derived airway epithelial platform, composed of the major airway epithelial cell types, that is permissive to SARS-CoV-2 infection. Subsets of iPSC-airway cells express the SARS-CoV-2 entry factors angiotensin-converting enzyme 2 (ACE2), and transmembrane protease serine 2 (TMPRSS2). Multiciliated cells are the primary initial target of SARS-CoV-2 infection. On infection with SARS-CoV-2, iPSC-airway cells generate robust interferon and inflammatory responses, and treatment with remdesivir or camostat mesylate causes a decrease in viral propagation and entry, respectively. In conclusion, iPSC-derived airway cells provide a physiologically relevant in vitro model system to interrogate the pathogenesis of, and develop treatment strategies for, COVID-19 pneumonia.


Subject(s)
COVID-19 , Induced Pluripotent Stem Cells , Pluripotent Stem Cells , Epithelial Cells , Humans , SARS-CoV-2
8.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Article in English | MEDLINE | ID: covidwho-1595265

ABSTRACT

Infection by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) provokes a potentially fatal pneumonia with multiorgan failure, and high systemic inflammation. To gain mechanistic insight and ferret out the root of this immune dysregulation, we modeled, by in vitro coculture, the interactions between infected epithelial cells and immunocytes. A strong response was induced in monocytes and B cells, with a SARS-CoV-2-specific inflammatory gene cluster distinct from that seen in influenza A or Ebola virus-infected cocultures, and which reproduced deviations reported in blood or lung myeloid cells from COVID-19 patients. A substantial fraction of the effect could be reproduced after individual transfection of several SARS-CoV-2 proteins (Spike and some nonstructural proteins), mediated by soluble factors, but not via transcriptional induction. This response was greatly muted in monocytes from healthy children, perhaps a clue to the age dependency of COVID-19. These results suggest that the inflammatory malfunction in COVID-19 is rooted in the earliest perturbations that SARS-CoV-2 induces in epithelia.


Subject(s)
COVID-19/immunology , Epithelial Cells/immunology , Monocytes/immunology , SARS-CoV-2/pathogenicity , Adult , B-Lymphocytes/immunology , COVID-19/pathology , Child , Coculture Techniques , Ebolavirus/pathogenicity , Epithelial Cells/virology , Gene Expression Profiling , Humans , Inflammation , Influenza A virus/pathogenicity , Lung/immunology , Myeloid Cells/immunology , Species Specificity , Viral Proteins/immunology
9.
[Unspecified Source]; 2020.
Non-conventional in English | [Unspecified Source] | ID: grc-750471

ABSTRACT

The most severe and fatal infections with SARS-CoV-2 result in the acute respiratory distress syndrome, a clinical phenotype of coronavirus disease 2019 (COVID-19) that is associated with virions targeting the epithelium of the distal lung, particularly the facultative progenitors of this tissue, alveolar epithelial type 2 cells (AT2s). Little is known about the initial responses of human lung alveoli to SARS-CoV-2 infection due in part to inability to access these cells from patients, particularly at early stages of disease. Here we present an in vitro human model that simulates the initial apical infection of the distal lung epithelium with SARS-CoV-2, using AT2s that have been adapted to air-liquid interface culture after their derivation from induced pluripotent stem cells (iAT2s). We find that SARS-CoV-2 induces a rapid global transcriptomic change in infected iAT2s characterized by a shift to an inflammatory phenotype predominated by the secretion of cytokines encoded by NF-kB target genes, delayed epithelial interferon responses, and rapid loss of the mature lung alveolar epithelial program. Over time, infected iAT2s exhibit cellular toxicity that can result in the death of these key alveolar facultative progenitors, as is observed in vivo in COVID-19 lung autopsies. Importantly, drug testing using iAT2s confirmed the efficacy of TMPRSS2 protease inhibition, validating putative mechanisms used for viral entry in human alveolar cells. Our model system reveals the cell-intrinsic responses of a key lung target cell to infection, providing a platform for further drug development and facilitating a deeper understanding of COVID-19 pathogenesis.

10.
Angiogenesis ; 25(2): 225-240, 2022 05.
Article in English | MEDLINE | ID: covidwho-1491183

ABSTRACT

Severe viral pneumonia caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is characterized by a hyperinflammatory state typified by elevated circulating pro-inflammatory cytokines, frequently leading to potentially lethal vascular complications including thromboembolism, disseminated intracellular coagulopathy and vasculitis. Though endothelial infection and subsequent endothelial damage have been described in patients with fatal COVID-19, the mechanism by which this occurs remains elusive, particularly given that, under naïve conditions, pulmonary endothelial cells demonstrate minimal cell surface expression of the SARS-CoV-2 binding receptor ACE2. Herein we describe SARS-CoV-2 infection of the pulmonary endothelium in postmortem lung samples from individuals who died of COVID-19, demonstrating both heterogeneous ACE2 expression and endothelial damage. In primary endothelial cell cultures, we show that SARS-CoV-2 infection is dependent on the induction of ACE2 protein expression and that this process is facilitated by type 1 interferon-alpha (IFNα) or -beta(ß)-two of the main anti-viral cytokines induced in severe SARS-CoV-2 infection-but not significantly by other cytokines (including interleukin 6 and interferon γ/λ). Our findings suggest that the stereotypical anti-viral interferon response may paradoxically facilitate the propagation of COVID-19 from the respiratory epithelium to the vasculature, raising concerns regarding the use of exogenous IFNα/ß in the treatment of patients with COVID-19.


Subject(s)
COVID-19 , Angiotensin-Converting Enzyme 2 , Cytokines , Endothelial Cells , Humans , Interferon-alpha , SARS-CoV-2
11.
ACS Cent Sci ; 7(7): 1156-1165, 2021 Jul 28.
Article in English | MEDLINE | ID: covidwho-1337094

ABSTRACT

As the COVID-19 pandemic continues to spread, investigating the processes underlying the interactions between SARS-CoV-2 and its hosts is of high importance. Here, we report the identification of CD209L/L-SIGN and the related protein CD209/DC-SIGN as receptors capable of mediating SARS-CoV-2 entry into human cells. Immunofluorescence staining of human tissues revealed prominent expression of CD209L in the lung and kidney epithelia and endothelia. Multiple biochemical assays using a purified recombinant SARS-CoV-2 spike receptor-binding domain (S-RBD) or S1 encompassing both N termal domain and RBD and ectopically expressed CD209L and CD209 revealed that CD209L and CD209 interact with S-RBD. CD209L contains two N-glycosylation sequons, at sites N92 and N361, but we determined that only site N92 is occupied. Removal of the N-glycosylation at this site enhances the binding of S-RBD with CD209L. CD209L also interacts with ACE2, suggesting a role for heterodimerization of CD209L and ACE2 in SARS-CoV-2 entry and infection in cell types where both are present. Furthermore, we demonstrate that human endothelial cells are permissive to SARS-CoV-2 infection, and interference with CD209L activity by a knockdown strategy or with soluble CD209L inhibits virus entry. Our observations demonstrate that CD209L and CD209 serve as alternative receptors for SARS-CoV-2 in disease-relevant cell types, including the vascular system. This property is particularly important in tissues where ACE2 has low expression or is absent and may have implications for antiviral drug development.

12.
Stem Cell Reports ; 16(4): 940-953, 2021 04 13.
Article in English | MEDLINE | ID: covidwho-1180038

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leading to coronavirus disease 2019 (COVID-19) usually results in respiratory disease, but extrapulmonary manifestations are of major clinical interest. Intestinal symptoms of COVID-19 are present in a significant number of patients, and include nausea, diarrhea, and viral RNA shedding in feces. Human induced pluripotent stem cell-derived intestinal organoids (HIOs) represent an inexhaustible cellular resource that could serve as a valuable tool to study SARS-CoV-2 as well as other enteric viruses that infect the intestinal epithelium. Here, we report that SARS-CoV-2 productively infects both proximally and distally patterned HIOs, leading to the release of infectious viral particles while stimulating a robust transcriptomic response, including a significant upregulation of interferon-related genes that appeared to be conserved across multiple epithelial cell types. These findings illuminate a potential inflammatory epithelial-specific signature that may contribute to both the multisystemic nature of COVID-19 as well as its highly variable clinical presentation.


Subject(s)
COVID-19/pathology , Colon/pathology , Intestinal Mucosa/pathology , Organoids/pathology , Cell Line , Colon/virology , Epithelial Cells/virology , Humans , Induced Pluripotent Stem Cells/cytology , Inflammation/virology , Intestinal Mucosa/virology , Models, Biological , Organoids/cytology , Organoids/virology , SARS-CoV-2 , Virus Replication/physiology
14.
Virus Res ; 292: 198246, 2021 01 15.
Article in English | MEDLINE | ID: covidwho-974719

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has created an urgent need for therapeutics that inhibit the SARS-COV-2 virus and suppress the fulminant inflammation characteristic of advanced illness. Here, we describe the anti-COVID-19 potential of PTC299, an orally bioavailable compound that is a potent inhibitor of dihydroorotate dehydrogenase (DHODH), the rate-limiting enzyme of the de novo pyrimidine nucleotide biosynthesis pathway. In tissue culture, PTC299 manifests robust, dose-dependent, and DHODH-dependent inhibition of SARS-COV-2 replication (EC50 range, 2.0-31.6 nM) with a selectivity index >3,800. PTC299 also blocked replication of other RNA viruses, including Ebola virus. Consistent with known DHODH requirements for immunomodulatory cytokine production, PTC299 inhibited the production of interleukin (IL)-6, IL-17A (also called IL-17), IL-17 F, and vascular endothelial growth factor (VEGF) in tissue culture models. The combination of anti-SARS-CoV-2 activity, cytokine inhibitory activity, and previously established favorable pharmacokinetic and human safety profiles render PTC299 a promising therapeutic for COVID-19.


Subject(s)
Antiviral Agents/pharmacology , Carbamates/pharmacology , Carbazoles/pharmacology , Cytokines/antagonists & inhibitors , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , SARS-CoV-2/drug effects , Virus Replication/drug effects , Animals , Chlorocebus aethiops , Cytokine Release Syndrome/drug therapy , Cytokines/immunology , Dihydroorotate Dehydrogenase , HeLa Cells , Humans , Inflammation/drug therapy , Inflammation/virology , Vero Cells , COVID-19 Drug Treatment
15.
Mol Cell ; 80(6): 1104-1122.e9, 2020 12 17.
Article in English | MEDLINE | ID: covidwho-933377

ABSTRACT

Human transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causative pathogen of the COVID-19 pandemic, exerts a massive health and socioeconomic crisis. The virus infects alveolar epithelial type 2 cells (AT2s), leading to lung injury and impaired gas exchange, but the mechanisms driving infection and pathology are unclear. We performed a quantitative phosphoproteomic survey of induced pluripotent stem cell-derived AT2s (iAT2s) infected with SARS-CoV-2 at air-liquid interface (ALI). Time course analysis revealed rapid remodeling of diverse host systems, including signaling, RNA processing, translation, metabolism, nuclear integrity, protein trafficking, and cytoskeletal-microtubule organization, leading to cell cycle arrest, genotoxic stress, and innate immunity. Comparison to analogous data from transformed cell lines revealed respiratory-specific processes hijacked by SARS-CoV-2, highlighting potential novel therapeutic avenues that were validated by a high hit rate in a targeted small molecule screen in our iAT2 ALI system.


Subject(s)
Alveolar Epithelial Cells/metabolism , COVID-19/metabolism , Phosphoproteins/metabolism , Proteome/metabolism , SARS-CoV-2/metabolism , Alveolar Epithelial Cells/pathology , Alveolar Epithelial Cells/virology , Animals , Antiviral Agents , COVID-19/genetics , COVID-19/pathology , Chlorocebus aethiops , Cytopathogenic Effect, Viral , Cytoskeleton , Drug Evaluation, Preclinical , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Induced Pluripotent Stem Cells/virology , Phosphoproteins/genetics , Protein Transport , Proteome/genetics , SARS-CoV-2/genetics , Signal Transduction , Vero Cells , COVID-19 Drug Treatment
16.
Cell Stem Cell ; 27(6): 962-973.e7, 2020 12 03.
Article in English | MEDLINE | ID: covidwho-779662

ABSTRACT

A hallmark of severe COVID-19 pneumonia is SARS-CoV-2 infection of the facultative progenitors of lung alveoli, the alveolar epithelial type 2 cells (AT2s). However, inability to access these cells from patients, particularly at early stages of disease, limits an understanding of disease inception. Here, we present an in vitro human model that simulates the initial apical infection of alveolar epithelium with SARS-CoV-2 by using induced pluripotent stem cell-derived AT2s that have been adapted to air-liquid interface culture. We find a rapid transcriptomic change in infected cells, characterized by a shift to an inflammatory phenotype with upregulation of NF-κB signaling and loss of the mature alveolar program. Drug testing confirms the efficacy of remdesivir as well as TMPRSS2 protease inhibition, validating a putative mechanism used for viral entry in alveolar cells. Our model system reveals cell-intrinsic responses of a key lung target cell to SARS-CoV-2 infection and should facilitate drug development.


Subject(s)
Alveolar Epithelial Cells/virology , Inflammation/virology , SARS-CoV-2/physiology , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Animals , Antiviral Agents/pharmacology , COVID-19/virology , Cells, Cultured , Drug Development , Enzyme Inhibitors/pharmacology , Humans , Models, Biological , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/virology , RNA-Seq , Serine Endopeptidases/metabolism , Virus Replication
17.
Science ; 370(6513): 241-247, 2020 10 09.
Article in English | MEDLINE | ID: covidwho-733186

ABSTRACT

Recent outbreaks of Ebola virus (EBOV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have exposed our limited therapeutic options for such diseases and our poor understanding of the cellular mechanisms that block viral infections. Using a transposon-mediated gene-activation screen in human cells, we identify that the major histocompatibility complex (MHC) class II transactivator (CIITA) has antiviral activity against EBOV. CIITA induces resistance by activating expression of the p41 isoform of invariant chain CD74, which inhibits viral entry by blocking cathepsin-mediated processing of the Ebola glycoprotein. We further show that CD74 p41 can block the endosomal entry pathway of coronaviruses, including SARS-CoV-2. These data therefore implicate CIITA and CD74 in host defense against a range of viruses, and they identify an additional function of these proteins beyond their canonical roles in antigen presentation.


Subject(s)
Antigens, Differentiation, B-Lymphocyte/physiology , Betacoronavirus/physiology , Coronavirus Infections/immunology , Ebolavirus/physiology , Hemorrhagic Fever, Ebola/immunology , Histocompatibility Antigens Class II/physiology , Host-Pathogen Interactions/immunology , Nuclear Proteins/physiology , Pneumonia, Viral/immunology , Trans-Activators/physiology , Virus Internalization , Antigens, Differentiation, B-Lymphocyte/genetics , COVID-19 , Cell Line, Tumor , Coronavirus Infections/virology , DNA Transposable Elements , Endosomes/virology , Genetic Testing , Hemorrhagic Fever, Ebola/virology , Histocompatibility Antigens Class II/genetics , Host-Pathogen Interactions/genetics , Humans , Nuclear Proteins/genetics , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , Trans-Activators/genetics , Transcription, Genetic
18.
bioRxiv ; 2020 Aug 05.
Article in English | MEDLINE | ID: covidwho-721075

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has created an urgent need for therapeutics that inhibit the SARS-CoV-2 virus and suppress the fulminant inflammation characteristic of advanced illness. Here, we describe the anti-COVID-19 potential of PTC299, an orally available compound that is a potent inhibitor of dihydroorotate dehydrogenase (DHODH), the rate-limiting enzyme of the de novo pyrimidine biosynthesis pathway. In tissue culture, PTC299 manifests robust, dose-dependent, and DHODH-dependent inhibition of SARS CoV-2 replication (EC 50 range, 2.0 to 31.6 nM) with a selectivity index >3,800. PTC299 also blocked replication of other RNA viruses, including Ebola virus. Consistent with known DHODH requirements for immunomodulatory cytokine production, PTC299 inhibited the production of interleukin (IL)-6, IL-17A (also called IL-17), IL-17F, and vascular endothelial growth factor (VEGF) in tissue culture models. The combination of anti-SARS-CoV-2 activity, cytokine inhibitory activity, and previously established favorable pharmacokinetic and human safety profiles render PTC299 a promising therapeutic for COVID-19.

19.
bioRxiv ; 2020 Aug 06.
Article in English | MEDLINE | ID: covidwho-637839

ABSTRACT

The most severe and fatal infections with SARS-CoV-2 result in the acute respiratory distress syndrome, a clinical phenotype of coronavirus disease 2019 (COVID-19) that is associated with virions targeting the epithelium of the distal lung, particularly the facultative progenitors of this tissue, alveolar epithelial type 2 cells (AT2s). Little is known about the initial responses of human lung alveoli to SARS-CoV-2 infection due in part to inability to access these cells from patients, particularly at early stages of disease. Here we present an in vitro human model that simulates the initial apical infection of the distal lung epithelium with SARS-CoV-2, using AT2s that have been adapted to air-liquid interface culture after their derivation from induced pluripotent stem cells (iAT2s). We find that SARS-CoV-2 induces a rapid global transcriptomic change in infected iAT2s characterized by a shift to an inflammatory phenotype predominated by the secretion of cytokines encoded by NF-kB target genes, delayed epithelial interferon responses, and rapid loss of the mature lung alveolar epithelial program. Over time, infected iAT2s exhibit cellular toxicity that can result in the death of these key alveolar facultative progenitors, as is observed in vivo in COVID-19 lung autopsies. Importantly, drug testing using iAT2s confirmed an antiviral dose-response to remdesivir and demonstrated the efficacy of TMPRSS2 protease inhibition, validating a putative mechanism used for viral entry in human alveolar cells. Our model system reveals the cell-intrinsic responses of a key lung target cell to infection, providing a physiologically relevant platform for further drug development and facilitating a deeper understanding of COVID-19 pathogenesis.

SELECTION OF CITATIONS
SEARCH DETAIL